群论
基本概念
子群 · 正规子群 · 商群
群同态
 · (半)直积 · 直和
单群 · 有限群 · 无限群
拓扑群 · 群概形 · 循环群
幂零群 · 可解群
离散群
有限单群分类
循环群 Zn
交错群 An
散在群
马蒂厄群 M11..12,M22..24
康威群 Co1..3
扬科群 J1..4
费歇尔群 F22..24
子怪兽群 B
怪兽群 M

其他有限群
对称群, Sn
二面体群, Dn
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

连续群
李群
一般线性群 GL(n)
特殊线性群 SL(n)
正交群 O(n)
特殊正交群 SO(n)
酉群 U(n)
特殊酉群 SU(n)
辛群 Sp(n)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

无限维群
共形群
微分同胚群

环路群
量子群
O(∞) SU(∞) Sp(∞)

代数群
椭圆曲线
线性代数群英语Linear algebraic group
阿贝尔簇英语Abelian variety

在数学中,群 G 叫做子群的集合 {Hi} 的直和,如果

解说

如果 G 是子群 HK 的直和,则我们写为 G = H + K;如果 G 是子群集合 {Hi} 的直和,我们经常写为 G = ∑Hi。不严格的说,直和同构于子群的弱直积。

在抽象代数中,这种构造方法可以推广为向量空间、模和其他结构的直和;详情参见条目直和。

这个符号是符合交换律的;所以在两个子群的直和的情况下,G = H + K = K + H。它还是符合结合律的,在如果 G = H + K 并且 K = L + MG = H + (L + M) = H + L + M 的意义上。

可以表达为非平凡子群的直和的群被叫做“可分解”的;否则叫做“不可分解”的。

如果 G = H + K,则可以证明:

上述断言可以推广到 G = ∑Hi 的情况,这里的 {Hi} 是子群的有限集合。

g = h1*h2* ... * hi * ... * hn

注意类似于直积,这里的每个 g 可以唯一的表达为

g = (h1,h2, ..., hi, ..., hn)。

因为 hi * hj = hj * hi 对于所有 ij,可推出在直和中的元素的乘积同构于对应的在直积中的元素的乘积;因此对于子群的有限集合,∑Hi 同构于直积 ×{Hi}。

直和的等价

直和对于群不是唯一的;例如在克莱因四元群 V4 = C2 × C2 中,我们有

V4 = <(0,1)> + <(1,0)> 和
V4 = <(1,1)> + <(1,0)>。

但是,Remak-Krull-Schmidt定理声称给定有限群 G = ∑Ai = ∑Bj,这里的每个 Ai 和每个 Bj 都是不平凡的并且不可分解的,则两直和分别涉及到的子群在重新排序后同构意义下是等价的。

Remak-Krull-Schmidt 定理对无限群无效,所以在无限 G = H + K = L + M 的情况下,即使在所有子群都是非平凡的并且不可分解的,我们不能假定 H 同构于要么 L 要么 M

推广到在无限集合上的和

如果我们希望在 G 是子群的无限(可能不可数)集合的直和的情况下描述上述性质,我们需要更加的小心。

如果 g 是群的集合的笛卡尔积 ∏{Hi} 的元素,设 gi 是在乘积中的 g 的第 i 个元素。 群的集合 {Hi} 的外直和(写为 ∑E{Hi}) 是 ∏{Hi} 的子集,这里对于每个 ∑E{Hi} 的元素 ggi 是单位元 e H i {\displaystyle e_{H_{i}}} 对于除了有限个之外的所有 gi (等价的说只有有限个 gi 不是单位元)。在外直和中的群运算是逐点乘法,如在平常直积中那样。

应当容易的明白这个子集确实形成了群;对于群 Hi 的无限集合,外直和同一于直积。

那么如果 G = ∑Hi,则 G 同构于 ∑E{Hi}。因此在某种意义上,直和是“内部”外直和。我们有了对于每个 G 中的元素 g,有一个唯一有限集合 S 和唯一的 {hiHi : iS} 使得 g = ∏ {hi : iS}。

www.zuoweixin.com
问题反馈联系QQ:暂无联系方式,也可发qq邮箱。