在数学中,某个集合 X 上的 σ-代数又叫 σ-域,是 X 的幂集的子集合(X 的幂集即包含所有 X 的子集的集合系)。这个子集满足对于补集运算和可数个并集运算的封闭性(因此对于可数个交集运算也是封闭的)。σ-代数在测度论里可以用来定义所谓的“可测集合”,是测度论的基础概念之一。

σ-代数的概念大约起始于二十世纪的前三十年,它随着测度论的发展而逐渐清晰。最著名的 σ-代数是关于实数轴测度的波莱尔σ-代数(得名于法国数学家埃米·波莱尔),以及1901年亨利·勒贝格建立的勒贝格σ-代数。而现代的测度理论的公理化体系就建立在勒贝格的相关理论之上。在这个领域中,σ-代数不仅仅是用于建立公理体系,也是一个强有力的工具,在定义许多重要的概念如条件期望和鞅的时候,都需要用到。

定义

X {\displaystyle X} 为非空集合,集合系 F {\displaystyle {\mathcal {F}}} 中的元素是 X {\displaystyle X} 的子集合,满足以下条件的集合系 F {\displaystyle {\mathcal {F}}} 称为 X {\displaystyle X} 上的一个 σ-代数[1]

以上条件用数学语言来表示,就是:

X {\displaystyle X} 为一集合,假设有集合系 F P ( X ) {\displaystyle {\mathcal {F}}\subseteq {\mathcal {P}}(X)} ,其中 P ( X ) {\displaystyle {\mathcal {P}}(X)} 代表 X {\displaystyle X} 的幂集,若 F {\displaystyle {\mathcal {F}}} 满足下列条件

则称集合系 F {\displaystyle {\mathcal {F}}} X {\displaystyle X} 的 σ-代数。

在测度论里 ( X , F ) {\displaystyle \left(X,{\mathcal {F}}\right)} 称为一个可测空间。集合族 F {\displaystyle {\mathcal {F}}} 中的元素,也就是 X {\displaystyle X} 的某子集,称为可测集合。而在概率论中,这些集合被称为随机事件。

例子

性质

σ-代数是一个代数(域)也是一个λ系,它对集合的交集、并集、差集、可数交集、可数并集运算都是封闭的。

参考来源

  1. ^ Paul Halmos. Measure Theory. Van Nostrand. 1950. ,第28页
  2. ^ Marc Briane & Gilles Pagès. Théorie de l'intégration. Vuibert. 2000. ISBN 2-7117-8946-2. ,第45-46页
www.zuoweixin.com
问题反馈联系QQ:暂无联系方式,也可发qq邮箱。