在集合论及其数学应用中,是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。

在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格英语Free_lattice#The_complete_free_lattice

真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。

标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。

在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。

“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。

引用

另见

集合论
公理
  • 选择
    • 可数
    • 相关英语Axiom of dependent choice
  • 外延
  • 无穷
  • 配对
  • 幂集
  • 正则性
  • 并集
  • 马丁公理英语Martin's axiom
  • 公理模式
    • 替代
    • 分类
运算
  • 笛卡儿积
  • 德摩根定律
  • 交集
  • 幂集
  • 补集
  • 对称差
  • 并集
  • 概念
  • 方法
  • 基数(大基数)
  • 可构造全集英语Constructible universe
  • 连续统假设
  • 对角论证法
  • 元素
    • 有序对
    • 多元组
  • 集合族
  • 力迫
  • 一一对应
  • 序数
  • 超限归纳法
  • 文氏图
集合类型
  • 可数集
  • 空集
  • 有限集合(继承有限集合)
  • 模糊集
  • 无限集合
  • 递归集合
  • 子集
  • 传递集合
  • 不可数集
  • 泛集英语Universal set
理论
  • 可替代的集合论
  • 集合论
  • 朴素集合论
  • 康托尔定理
  • 策梅洛
    • 广义英语General set theory
  • 数学原理
    • 新基础
  • 策梅洛-弗兰克
    • 冯诺伊曼-博内斯-哥德尔
      • Morse–Kelley英语Morse–Kelley set theory
    • 克里普克–普拉特克英语Kripke–Platek set theory
    • 塔斯基–格罗滕迪克英语Tarski–Grothendieck set theory
  • 悖论英语Paradoxes of set theory
  • 问题
  • 罗素悖论
  • 萨斯林问题英语Suslin's problem
  • ZFC系统无法确定的命题列表
集合论者
  • 亚伯拉罕·弗兰克尔英语Abraham Fraenkel
  • 伯特兰·罗素
  • 恩斯特·策梅洛
  • 格奥尔格·康托尔
  • 约翰·冯·诺伊曼
  • 库尔特·哥德尔
  • 卢菲特·泽德
  • 保尔·贝尔奈斯英语Paul Bernays
  • 保罗·寇恩
  • 理查德·戴德金
  • 托马斯·耶赫英语Thomas Jech
  • 威拉德·蒯因
www.zuoweixin.com
问题反馈联系QQ:暂无联系方式,也可发qq邮箱。