数学上,一个域 F {\displaystyle F} 被称作代数闭域,当且仅当任何系数属于 F {\displaystyle F} 且次数大于零的单变量多项式在 F {\displaystyle F} 里至少有一个根。

例子

举例明之,实数域并非代数闭域,因为下列实系数多项式无实根:

x 2 + 1 = 0 {\displaystyle x^{2}+1=0}

同理可证有理数域非代数闭域。此外,有限域也不是代数闭域,因为若 a 1 , , a n {\displaystyle a_{1},\ldots ,a_{n}} 列出 F {\displaystyle F} 的所有元素,则下列多项式在 F {\displaystyle F} 中没有根:

( x a 1 ) ( x a 2 ) ( x a n ) + 1 {\displaystyle (x-a_{1})(x-a_{2})\cdots (x-a_{n})+1\,}

反之,复数域则是代数闭域;这是代数基本定理的内容。另一个代数闭域之例子是代数数域。

等价的刻划

给定一个域 F {\displaystyle F} ,其代数封闭性与下列每一个性质等价:

不可约多项式当且仅当一次多项式

F是代数闭域,当且仅当环F[x]中的不可约多项式是而且只能是一次多项式。

“一次多项式是不可约的”的断言对于任何域都是正确的。如果F是代数闭域,p(x)是F[x]的一个不可约多项式,那么它有某个根a,因此p(x)是x − a的一个倍数。由于p(x)是不可约的,这意味着对于某个k ∈ F \ {0},有p(x) = k(x − a)。另一方面,如果F不是代数闭域,那么存在F[x]内的某个非常数多项式p(x)在F内没有根。设q(x)为p(x)的某个不可约因子。由于p(x)在F内没有根,因此q(x)在F内也没有根。所以,q(x)的次数大于一,因为每一个一次多项式在F内都有一个根。

每一个多项式都是一次多项式的乘积

F是代数闭域,当且仅当每一个系数位于次数F内的n ≥ 1的多项式p(x)都可以分解成线性因子。也就是说,存在域F的元素k, x1, x2, ……, xn,使得p(x) = k(x − x1)(x − x2) ··· (x − xn)。

如果F具有这个性质,那么显然F[x]内的每一个非常数多项式在F内都有根;也就是说,F是代数闭域。另一方面,如果F是代数闭域,那么根据前一个性质,以及对于任何域K,任何K[x]内的多项式都可以写成不可约多项式的乘积,推出这个性质对F成立。

F的每一个自同态都有特征向量

F是代数闭域,当且仅当对于每一个自然数n,任何从F到它本身的线性映射都有某个特征向量。

F的自同态具有特征向量,当且仅当它的特征多项式具有某个根。因此,如果F是代数闭域,每一个F的自同态都有特征向量。另一方面,如果每一个F的自同态都有特征向量,设p(x)为F[x]的一个元素。除以它的首项系数,我们便得到了另外一个多项式q(x),它有根当且仅当p(x)有根。但如果q(x) = x + an − 1xn − 1+ ··· + a0,那么q(x)是以下友矩阵的特征多项式:

( 0 0 0 a 0 1 0 0 a 1 0 1 0 a 2 0 0 1 a n 1 ) . {\displaystyle {\begin{pmatrix}0&0&\cdots &0&-a_{0}\\1&0&\cdots &0&-a_{1}\\0&1&\cdots &0&-a_{2}\\\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&\cdots &1&-a_{n-1}\end{pmatrix}}.}

有理表达式的分解

F是代数闭域,当且仅当每一个系数位于F内的一元有理函数都可以写成一个多项式函数与若干个形为a/(x − b)的有理函数之和,其中n是自然数,abF的元素。

如果F是代数闭域,那么由于F[x]内的不可约多项式都是一次的,根据部分分式分解的定理,以上的性质成立。

而另一方面,假设以上的性质对于域F成立。设p(x)为F[x]内的一个不可约元素。那么有理函数1/p可以写成多项式函数q与若干个形为a/(x − b)的有理函数之和。因此,有理表达式

1 p ( x ) q ( x ) = 1 p ( x ) q ( x ) p ( x ) {\displaystyle {\frac {1}{p(x)}}-q(x)={\frac {1-p(x)q(x)}{p(x)}}}

可以写成两个多项式的商,其中分母是一次多项式的乘积。由于p(x)是不可约的,它一定能整除这个乘积,因此它也一定是一个一次多项式。

代数闭包

E F {\displaystyle E\supset F} 为代数扩张,且 E {\displaystyle E} 是代数闭域,则称 E {\displaystyle E} F {\displaystyle F} 的一个代数闭包。可以视之为包含 F {\displaystyle F} 的最小的代数闭域。

若我们承认佐恩引理(或其任一等价陈述),则任何域都有代数闭包。设 E , E {\displaystyle E,E'} 为任两个 F {\displaystyle F} 的代数闭包,则存在环同构 σ : E E {\displaystyle \sigma :E{\stackrel {\sim }{\rightarrow }}E'} 使得 σ | F = i d F {\displaystyle \sigma |_{F}=\mathrm {id} _{F}} ;代数闭包在此意义上是唯一的,通常记作 F a l g {\displaystyle F^{\mathrm {alg} }} F ¯ {\displaystyle {\bar {F}}}

文献

抽象代数相关主题
代数结构 · 群 · 环 · 域 · 有限域 · 本原元 · 格 · 逆元 · 等价关系 · 代数中心 · 同态 · 同构 · 商结构(商系统) · 同构基本定理 · 合成列 · 自由对象
群论
幺半群 · 半群 · 阿贝尔群 · 非阿贝尔群 · 循环群 · 有限群 · 单群 · 半单群 · 典型群 · 自由群 · 交换子群(交换子) · 幂零群 · 可解群 · p-群 · 对称群 · 李群 · 伽罗瓦群
子群陪集 · 双陪集 · 商群 · 共轭类 · 拉格朗日定理 · 西罗定理 · 正规子群 · 群中心 · 中心化子和正规化子 · 稳定子群 · 置换群
其他阶 · 群扩张 · 群同态 · 群同构 · 群表示 · 群作用 · 波利亚计数定理
环论
子环 · 整环 · 除环 · 多项式环 · 素环 · 商环 · 诺特环 · 局部环 · 赋值环 · 环代数 · 理想 · 主理想环 · 唯一分解整环
深度 · 单模 · 自由模 · 平坦模 · 阿廷模 · 诺特模
其他幂零元 · 特征 · 完备化 · 环的局部化
域论
有限域 · 原根 · 代数闭域 · 局部域 · 分裂域 · 分式环
域扩张单扩张 · 有限扩张 · 超越扩张 · 代数扩张 · 正规扩张 · 可分扩张 · 伽罗瓦扩张 · 阿贝尔扩张 · 伽罗瓦理论基本定理
www.zuoweixin.com
问题反馈联系QQ:暂无联系方式,也可发qq邮箱。