在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。

定义

如果称一个数学函数 L ( x ) {\displaystyle L(x)} 为线性的,可以是指:

需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。

定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 x 1 + k 2 x 2 + . . . + k n x n + b {\displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {\displaystyle k_{i}} b {\displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法[2](叫“多元超平面方程组”可能更合适)。

但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。

例子

数学

参见:线性函数

在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。

但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归

物理

在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。

应用

直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k x 2 {\displaystyle y=k*x^{2}} (假定 k {\displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log y = log ( k x 2 ) log y = log k + 2 log x {\displaystyle \log {y}=\log {(k*x^{2})}\rightarrow \log {y}=\log {k}+2*\log {x}} ,作代换 y 1 = log y , x 1 = 2 log x , b = log k {\displaystyle y_{1}=\log {y},x_{1}=2*\log {x},b=\log {k}} ,则可得 y 1 = b + 2 x 1 {\displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

另见

脚注与参考资料

脚注

  1. ^ 在一些非数理类的期刊上,偶尔能看到确实有文献把两者混为一谈了。如见杜杰。
  2. ^ 何思谦 (总主编). 数学辞海 1 第1版. 山西教育出版社,中国科学技术出版社,东南大学出版社. 2002年: 108. ISBN 7504633259. 
  3. ^ 梁灿彬 2004,第125页(位于第4章“恒定电流和电路”第3节“欧姆定律和焦耳定律”)上写“满足欧姆定律的元器件的伏安特性曲线显然是过原点的直线。伏安特性曲线是直线的元器件叫线性元件。”梁灿彬 2004,第297页(位于第7章“磁介质”第3节“铁磁性与铁磁质”)上写“这条曲线的显著特点是它的非直线性(简称非线性)。”赵凯华 2003,第308页(位于第5章“电路”第2节“各种导体的导电机制”)上写“一些半导体(如晶体管)或气态导体(如日光灯中的汞蒸气),欧姆定律不成立,其伏安特性曲线不是直线,而是不同形状的曲线。这种元件叫非线性元件。”
  4. ^ 胡先进. 高考实验题中的线性图像处理数据. 物理教学探讨 (中国知网). 2013年, (02期) (中文(中国大陆)‎). 作线性变换不仅是由于直线容易描绘,更重要的是直线的斜率和截距所包含的物理信息可以用来求取一些相关的物理量。 
  5. ^ 盛云生. 高中物理实验中线性关系的建立与应用. 物理通报 (中国知网). 2012年, (12期) (中文(中国大陆)‎). 
  6. ^ 陈春天, 魏玮. 金属电阻-温度线性关系准确度条件. 大学物理实验. 1997年, (01期) (中文(中国大陆)‎). 
  7. ^ 臧立志. 线性函数的平均值在高中物理中的应用. 物理教师. 2010, (31(4)): 57–58 (中文(中国大陆)‎). 
  8. ^ 沈志斌. 中学物理中非线性问题及其处理方法. 中学物理教学参考. 2002年, (06期) (中文(中国大陆)‎). 
  9. ^ 万俊峰. 高中物理中的"非线性关系"问题的探讨. 试题与研究:新课程论坛. 2010, (11期) (中文(中国大陆)‎). 

脚注所引资料

www.zuoweixin.com
问题反馈联系QQ:暂无联系方式,也可发qq邮箱。